评定各不确定度分量 " ;\EU4R
OSC_-[b-
T%YN(f
A类标准不确定度 `_J>R
!VvM
^j?"0|
B类标准不确定度 ~jC$C2A0
?A 5;"
/8lmNA
评定合成标准不确定度 ,k,+UisG
:2;c@ uj
ET~^P
扩展不确定度 257q%"
Ng\]
gg
:{Xf*`
给出测量不确定度 O[H
Bw~
\Oa11c`6
图2 不确定度评定流程图 -o
`|A767
RJA#cv~f
hg}R(.1K=
0`"DYJ}d
对于出现临界值时,应采取以下措施: XQ$9E?|=
g9:V00^<
①重新测定; gL6.,4q+1
?4MZT5 .
②提供测量的不确定度(测定次数>6)。 C?lZu\L
u13v@<HGc
k{w
f
l*O)r
5.2 常规检测工作中的不确定度的A类评定 ]8ob`F`m,
Jw)-6WJ!uO
⑴ 在统计控制状态下,测量过程样本合样标准差sp的估算: |FH|l#bu>
i+eDBg6
sp=( ) ])iw|`@dJ
mr\C
式中si是每次检测时的样本标准差,在同样条件情况下,用此测量过程对被测量X进行n次重复测量,以算术平均值 作为测量结果,其标准不确定度为: ~e#QAaXD#5
G+zIh}9
⑵ 在规范化常规测量中,多批次相同或不同测量次数的不确定度评定方法 (7J (.EG2e
q"|#KT^)
m批测量中次数相同时的不确定度: UcxMA%Pw7$
S1G3xY$0
m批测量中n次数不同时的不确定数为: UVj1nom
}Asp=<kCc
式中自由度 ;每一批自由度 ui=ni-1 k}$k6Sr"
("-`Y'"K
⑶ 在常规理化检验中,除对标准溶液定值以及考核样品测试时需采用上述方法外,对单个样品测试时,大于5次的机会极少。 IQA<xqX
4C[n@p2
根据标准分析方法进行的常规检验,或在重复性和复现性条件下,结果估计接近正态分布前提下对xi进行少数次独立检测,结果的最大值和最小值间的极差(R)可按下式估算实验标准差: _mSQ>BBRl
jtFet{
式中C为极差系数。 YM
EI
J}
!NfN16
测量次数与极差系数的关系见表1,水中铭测定结果的标准差估算见表2。 |+0XO?,sZ
>IzUn: 0F
Ydr/ T/1
2"~QI xY=
表1 测量次与极差系数的关系 R""P01IZH
=nYd|Ok
hZ0CnY8 '
6_m5%c~;+r
测量次数 n 2 3 4 5 6 =7JvS~s
p9;Oe,Il
极差系数 C 1.13 1.64 2.06 2.33 2.53 I+,~pmn:
2NHkK_B1P
O,`#h*{N
CdCo+U5z{
hk
=nXv2M
>K
}j}M%
5K_KZL-
表2 水中铭测定结果的标准差估算 G(g`>' m
J7Z`wjX1
=ttvC"4?
ZGIL
V
4b\R@Knu
F0.Rv):
测定结果 x R s=R/C RSD=s/x×100% &c?q#-^)\+
|:H
9#=
p/(μg·L-1) p/(μg·L-1) p/(μg·L-1) p/(μg·L-1) / % OON]E3yy
!t;B.[U *
第一组n=2 30.0;33.7 31.85 3.7 3.27 10.26 u5'jIqlU
ln1QY"g
第二组n=3 30.0;33.8 31.76 3.8 2.31 7.27 M#u~]?hS
BJDSk#!J!{
第三组n=4 29.9;33.6;31.5;32.0 31.75 3.7 1.80 5.60 ?qmJJ5Gn
PK&\pkX
\c\z 6;j
oXgi#(y
0..]c-V(G
8zrLl:{
⑷ 临界R0控制限在极差值估算中的应用 a^7HI,
X!|K 4Z!k
常规检验中,一对数据间的差值即为极差,但在出现一对相同数据时,对实验标准差的估计带来困难。临界R0值在水质标准检验方法中用于精密度的控制,它的建立基于收集实验室对某项目测定时的极差值分布。如某实验室在一段时间内收集的不同质量浓度铜的重复样测试结果的极差值见表3,以此估计重复样测试结果的实验标准差。 *:Uq
;)*
9dwLkr
jP\5bg-}
表3 铜的不同浓度范围减差值及控制限 IweNe`Z
NEt_UcC
{'6-;2&f
]3d5kf
浓度范围 22Oe~W;
.[o`TlG%
p/(μg·L-1) W];l[D<S*
lI;ACF^
yUvn h
^=y%s
重复测定组数 t>eeOWk3
TiD|.a8
S
n/组 SEIJ+u9XsA
m=V69
a#
&p5^Cjy L
HEF\TH9
p/(μg·L-1) [I78<IJc
ow*^
z78M{
x]vyt}oCmk
q>[}JtXK
平均相对减差值(R) VN]j*$5
]s`cn}d
Wx8n)
I?CfdI
R的加权均值 L<p.2[3
Q'0:k{G
J['i
1=mb2A
临界RC控制限(D4 R) 'nfdOX.d
(gb
vInZ
htOVt\+!34
? ;$f"Wl
h&<>nK
5 ~<15 H1hADn
%KW
NY(m
$Sc;
:djbZ><
16 </23* n]
>W^)1E,Qh
?EA&kZR]
%DuSco"
11.1 AqjEz+TVt
o`7B@]
<k7q9"\4
){xMMQ5
0.123 4 =pn(56
PZSi}j/
#GA6vJ4^s
,)P6fa/
0.094 0 ulxy 4] h
-MT.qhx
~4[4"Pi>|
8n Oent0a
0.307 o? {rPFR
[^GXHE=
ThmN^N
h`:f
{&Es3+{A
15~<25 6}9`z8
o#ajBOJ
!c 3li .
"Yu';&
23 #MhieG5
D>~S-]
jdF~0#vH
TT0~41&l
19.1 HAi'0%"
6UkX?I`>
sBo|e]m#
=[$zR>o*%
0.073 6 ^nS'3g^"
*)2&gQ&%+
{M5[gr%
tWNz:
V
O=HT3gp&
pM
B~Lt9
f
2sv$#'
Ax=k0%M[&
"]%.%$
1!@
KRV
V@0Z\&
RcUKe,
QGtKu:c.81
25~<50 Z
h?1+Sz&
CD\k.
Fg8i}
>w
ipB*]B F[
21 >|jSd2_p
jq{rNxdGx
pEIc?i*
O/M\Q
35.4 L*tn>AO
BgLK}p^
H aI
C,:3z
0.033 8 5%C-eB
b8v?@s~
-#=v~vE
<e|I?zI9-
0.031 3 ($&i\e31N
_c?&G`
PX}YDC zP$
V9f$zjpw
0.102 8C3oj
#-kG\
}
$Kn{x!,"(
v:kTZB
dq[X:3i
50~<100 s
8O"U%
luAmq+
w+c%Y\:
M@\A_x(Mas
26 X;[$yW9hE
QnHb*4<
~MuD`a7#G
# !:u
*1
65.9 7sgK+
ip
.
#+ N?D<
i-kj6N5
jFE1k(2e
0.025 4 \:7G1_o
"#ctT-g`6
f*(W%#*|
Xc>M_%+R
`]T#uP<u
U8||)+
ru>c\X^|
wf,B/[,d
l5/!0]/
Y0?<~G
f
jqJ't)N
GU,ztO.w3
?H0"*8C?Y
100~<200 CYHo~VIK
}M|,Z'@*
(d?sFwOt\
%VsIg
10 u~7
,v
&
G8tb>q<V
["
}Yp
qpZR-O
134 SO8b~N
DB>.Uf"
45H(.}&f
b@?pofZ`k
0.021 0 gK+/wTQ%
+204.Yj?D
RZrQ^tI3"
nBo?r}t4
s%xhT
5kbbeO|0G
5zk^zn)
!gbPxfH:6
BK;Gh0mp
%TUvH>;0
":!7R<t
2*)2c[/0F
~OSgpM#O!T
>20 5x? YFq6k
M)6iYA%$
A~)#
f Hd|tl
3 fW=vN0Z
rt0_[i
35%\"Y?
yu>)[|-
351 P W_"JZ
AO238RC!:
K7R!E,oPg
UD=[::##
0.013 0 EU7nS3K)O~
U1 `pY:P
m>|7&l_
%}JSR y
`6RccEm
9kwiG7V1
ZuZCIqN
4;@L#Pzt
Q5l+-
x8x-b>|$&<
So75h*e
HIt9W]koO
V#+F*
w?&D
/d/]#T[Z9
CN}0( 2n
例如在分析中出现一对重复的数据为16.5、16.5,对其实验标准差估算,可以直接引用“0.094”,极差R的估计值为0.094×16.5=1.55,标准差的估算值 M _lLP8W}
#?eM
Ews
s=1.55/1.13=1.37,(相对标准偏差RSD=s/x=8.31%)。分析中出现一对相同结果应视为偶尔出现的现象,不能认为极差是零。 =vriraV"
.cx9+;
⑸ 校正标准法中单一测定结果的不确定度估算 tw.z5
,_D@ggL-
在化学测试中,很多方法都是通过与标准系列比对定值的。即“当输入量的估计量是有实验数据用最小二乘法拟合的曲线上得到时,曲线上任何一点和表征曲线的标准不确定度,可用有关的统计程序评定”。 <1:I[b
=}u?1~V
倒如在对某一指标的测试中,校准曲线1.0mg/L~20 mg/L共7个质量浓度点,斜率b=0.03233,截距a=0.07802,相关系数r=0.9988,校准曲线的估计量差 k)y<iHR_o
FP0GE
+Mn(s36f2
62G%.'7
,校对曲线测量范围的方法标准差syx/b=0.36,RSD=4.8%。根据文献[2],单一结果不确定度范围的计算方法: <$#^)]Ts
sqRvnCD!
假设样品测量值为A:0.255,按上式计算被测物质量浓度的范围为: Vyc
r $ YEq5
(置信水平为95%,t=2 .45) EYn9ln_]u
\vpX6!T
单一结果标准不确定度为4.55mg/L±0.38mg/L0全质量管理体系,严格质量控制,及时发现和控制影响不确定度的因素,科学准确地估算检测结果的不确定度,保证检测结果和检测报告的质量。 uE..1N&*
Ypinbej
5.3 化学检测线性最小二乘法校准的不确定度 {c<cSrfI
dChMjaix
化学检测中的相对测量、分析方法或分析仪器通常是通过观察被分析物不同浓度x的响应值y来表征。在大多数情况下,被认为是线性关系(限于直线线性关系),即 hK %FpGYA
RQ 8;_)%
zT>BC}~.b
y=a+bx a&7uRR26
VL|Z+3L
gJ^taUE
M
C y~~DL
利用该线性关系,根据样品中被分析物产生的响应值yobs,由下式得出其浓度xpred: 3PlIn0+LX
l(\F2_,2W
)KGz -!1c
xpred=(yobs-a)/b p|@#IoA/e
S)/548=`
Nr).*]g@~
A(n#k&W1fZ
一般通过一组n(≥5)数值(xi,yi)的加权或不加权最小二乘法回归来确定截距a和斜率b。 cBv"d ~
:,g]Om^
主要不确定度来源于: FFN Sn
e`q*'u1?
⑴测量y时的随机变化,既影响标准响应值,又影响被测量的响应值yobs; B2'TRXIm1U
>/lB%<$/
⑵导致标准赋值xi误差的随机效应; bN03}&I
-sZb+2tDa
⑶xi和yi可能受恒定的未知偏移的影响,如连续稀释标准储备液产生的偏移; Cl-P6NlR".
`9+R]C]z8
⑷线性假设未必有效,如环境变化使线性变窄。 QB!_z4UJ_;
l|E4 7@#
在正常操作中不确定度来源最显著的的随机变化。对于这种来源不确定度的评定可采用以下方法: &Tj7qlP\
>1;jBx>Qy%
⑴化学分析中不确定度评估指南中的方法 W Zm8!Y
{FKr^)g
LjE3|+pJ
① K Cw
[J}eNprg
[r8[lkR
%sOY:>
eT3!"+p-F
6A]I" E]5
z=U+FHdh/-
ZJZSt% r
iw/~t
i@?|vu
E7\K{]
B3&C&o.h
式中:u(xpred) ……回归曲线的标准不确定度; z;oia!9z
!q,'k2=b,
sy/x ……回归曲线的剩余标准差; q:)Pf
P+
Za!KM
n ……回归曲线的点数; SS%Bde&<{
N#9N ^#1
N……样品重复测定次数; rucw{)
_
g`'!Vgd?M[
……回归曲线xi平均值; e)?}2
U5j4iz'
……yi估计值; 1qAE)8ie
+`"Tn`O
……样品测定结果均值(N次测定); QhRz57'
yy/'B:g
γ……回归曲线方程的相关系数; I*f@^(
Or$"f3gq
y……样品测定时,仪器平均响应值。 qB@N|Bb
]QY-LO(
Av n-Ug
@JdeOL;
⑵ ISO/TC 147/SC7N-45中的方法 OUN~7]OD%
#NMQN*J>D
]CU)#X<J
② [<^ '}-SJ
)`|`PB
md9JvbB
a9 S&n5
n-wOLH
QS,
_= <
(
例:原子吸收光谱法测定镉的回归曲线。5个校准溶液分别测定3次,结果见表2。测量实际浸出溶液2次,质量浓度为0.26mg/L。 d(Yuz#Qcrh
N45@)s!F9j
;O .;i,#Z
eX^ F^(
s*kSl:T@O
表2 镉校准溶液测定吸光值 8{Wh4~|+
GYri\ <[
质量浓度ρ/(mg·L-1) S#Pni}JD
1 &qeMYYY
2 B
#x.4~YX
3 NT [~AK9M
$#F7C[2N
0.1 A"~4|`W
0.028 DS1_hbk
0.029 T:(c/>
0.029 $:SSm$k
Sn!5/9Y
0.3 ?."YP[;
0.084 @j|=M7B
0.083 Yb;$z'
0.081 x|lX1Mh$
p]erk
0.5 N(=Z4Nk5
0.135 g?i0WS
0.131 urK~]68
0.133 I )wc&>Lc
H=v=)cUe[
0.7 R;3nL[{U
0.180 ~6Pv5DKq
0.181 4U>
g0
0.183 B
|SE |
v+(-\T\
i
0.9 -]<<}@NF
0.215 2$TwD*[
0.230 keb.%cb=
0.216 t Z@OAPRx
g&I|@$\
QD^q\9U[
:!yPR
G@P+M1c
<w3_EO
'x6rU"e $J
e$7KMH=
回归曲线:a=0.0087,b=0.2410,γ=0.9972,截距a标准差0.0029,斜率b标准差0.0050。 G=er0(7<
L7[f-cK2:
G
> t
6O_l;A[=1
=0.32048, =1.938, =4.95, =7.5, B=~uJUr
+8Y|kC{9"
=0.5, =0.1292, =5.49×10-3 iBwM]Eyv.
eD8e0
D'S
Ri\\Yb
eV~"T2!Sb
代入①式得: e]5NA?2j
K>C@oE[W
=0.018mg/L `F]
TY%=Y=
代入②式得: 4H NaE{O4
q!W=U8`
=0.017mg/L