评定各不确定度分量 #-lk=>
It_yh
#s
:m$%D]WY
A类标准不确定度 >8AtT=}w
_SFD}w3b$
`GDYL7pM(
B类标准不确定度 x<3vA|o
+_}2zc4
ut,"[+J
评定合成标准不确定度 :|A db\b
uJ y@
DtN6.9H2`
扩展不确定度 puyL(ohem
ujh4cp
J|q_&MX/
给出测量不确定度 CUG<v3\
zVa+5\Q
图2 不确定度评定流程图 OR9){qP
cOgtBEhn
mTgn}rXk
p'4P2
对于出现临界值时,应采取以下措施: C=cTj7Ub
1aG}-:$t'
①重新测定; xW4+)F5P(
m~eWQ_a]C@
②提供测量的不确定度(测定次数>6)。 /f<(K-o]
-pu\p-Z
w#,v n8
2*YXm>
|1
5.2 常规检测工作中的不确定度的A类评定 MA#!<b('
s[4!R&b
⑴ 在统计控制状态下,测量过程样本合样标准差sp的估算: F@bCm+z-
p|V1Gh<
sp=( ) Qm x~_
O>5 u5n
式中si是每次检测时的样本标准差,在同样条件情况下,用此测量过程对被测量X进行n次重复测量,以算术平均值 作为测量结果,其标准不确定度为: 0]W]#X4A
gr{Sh`Cm-
⑵ 在规范化常规测量中,多批次相同或不同测量次数的不确定度评定方法 c.A/{a
SJ7=<y}[d
m批测量中次数相同时的不确定度: Yf)|ws?!
XfK.Fj~-
m批测量中n次数不同时的不确定数为: 1\{U<Oli
[pFu
]^X
式中自由度 ;每一批自由度 ui=ni-1 JP,(4h*
{2gd4[:
⑶ 在常规理化检验中,除对标准溶液定值以及考核样品测试时需采用上述方法外,对单个样品测试时,大于5次的机会极少。 LI;Efy L
"~2#!bK7
根据标准分析方法进行的常规检验,或在重复性和复现性条件下,结果估计接近正态分布前提下对xi进行少数次独立检测,结果的最大值和最小值间的极差(R)可按下式估算实验标准差: rbuL@=S@*
$EGRaps{j>
式中C为极差系数。 , 64t
/`O]etr`d
测量次数与极差系数的关系见表1,水中铭测定结果的标准差估算见表2。 8u'O`j
o|;eMO-
+5t
bK
it\DZGsg
表1 测量次与极差系数的关系 2Jo~m_
95^i/6Gl!P
E<<p_hX8R
y3cf[Q
测量次数 n 2 3 4 5 6 pFJQ7Jlx
Cl6m$YUt
极差系数 C 1.13 1.64 2.06 2.33 2.53 -.{oqs$
I%
9bPQ
)_77>f%
wy{ \/?~c
n$XdSh/
IV{FH&t^T"
*me,(C
表2 水中铭测定结果的标准差估算 2wx!Lpr<i_
#(%t*"IY;
Bx(yu'g|a
07x=`
7hs}
FU%~9NKX
31~hlp;
测定结果 x R s=R/C RSD=s/x×100% x6LjcRS|
]A
p`
p/(μg·L-1) p/(μg·L-1) p/(μg·L-1) p/(μg·L-1) / % Qi_&aU$>lM
<
CDA"
第一组n=2 30.0;33.7 31.85 3.7 3.27 10.26 TMK'(6dH
$,TGP+vH
第二组n=3 30.0;33.8 31.76 3.8 2.31 7.27 5.wiTy
K"L_`.&Q
第三组n=4 29.9;33.6;31.5;32.0 31.75 3.7 1.80 5.60 jo)6
%w]
4.8nY\_WF
p#bhz5&/
\^&
'<7S^^ax
K#!X><B'
⑷ 临界R0控制限在极差值估算中的应用 L]I3P|y_
(bv,02
常规检验中,一对数据间的差值即为极差,但在出现一对相同数据时,对实验标准差的估计带来困难。临界R0值在水质标准检验方法中用于精密度的控制,它的建立基于收集实验室对某项目测定时的极差值分布。如某实验室在一段时间内收集的不同质量浓度铜的重复样测试结果的极差值见表3,以此估计重复样测试结果的实验标准差。 _ij$f<
WhFS2Jl0
R{?vQ
sLk
表3 铜的不同浓度范围减差值及控制限 7J|&U2}c
LnFWA0y
R?pR xY
eEl.. y
浓度范围 e;VIL 2|
;AIc?Cg
p/(μg·L-1) % /}WUP^H
,
=BLnsg
DC Q^fZ/
&:5\"b
重复测定组数 @|\R}k
%(
(Yb[)m>fQ}
n/组 qO@@8/l
f)Xr!7
ihCIh6
'gso'&Uaj
p/(μg·L-1) #Q"O4 b:8
[
ho(z30k
BB$oq'
a2 +~;{?g
平均相对减差值(R) *l&S-=]
[
U
, ?R
tCG76LH
yifY%!@Xu
R的加权均值 B~
S6R
Vwk #qgnX
l5xCz=dw
F!zP<A"
临界RC控制限(D4 R) W&(k!6<x
WrPUd{QM
2{-ZD ,(u7
wo_,Y0vfB
STZPYe
XE
5 ~<15 s .W
dxh
2'=T[<nNB
CLvX!O(~
\%UkSO\nO3
16 {o(j^@
l;o1 d-n]
MEB it
p/+a=Yo
11.1 bhniB@<
Xh56T^,2
AK@9?_D
1I:+MBGin
0.123 4 =?!wXOg_
=E.wv
A}l3cP;
`#
5 sX+~Q
0.094 0 2'w?\{}D
s%W C/ZK
{e 14[0U-
r 8RoE`/T
0.307 e~=;c
tVN
~UP[A'9jJ
|IzPgC
m+]K;}.}R
15~<25 5Odhb
ig/xv
UM"- nZ>[
v
dc\R?
23 &w_j/n
W^'
Yg||{
8V`WO6*
y51e%n$
19.1 s+$ Q}|?u
@=}0`bE
wDal5GJp
|6sp/38#p
0.073 6 ;u_X)
UNu#(nP
P9^Xm6QO
~D j8z+^
cKca;SNql1
@alK;\
,wb:dj-
hR?{3d#
x2
8b&/k8i:
Mk 6(UXY
YoNDf39
<dtGK~_
_
]ipajT
25~<50 tX s\R(?T
EI%89i`3^
:P~6~
Kum
YK'<NE3 4
21 Xl#ggub?
4Z&lYLq;
tS=(}2Q
#q=Efn'
35.4 $%#!bV
yvB.&<]No
}19\.z&J
"+G8d'%YV
0.033 8 OQJ6e:BGt
`X&gE,Ii
t'ql[
H G^'I+Yn
0.031 3 MQ8J<A Pf-
/k3:']G,s
0L52#;?Si"
N(yzk_~
0.102 Cw&KVw*
=T7.~W
SE*g;Cvg1
5v*\Zr5ha
1?l1:}^L
50~<100 G
01ON0
%8v\FS
5[0?g@aO
))Za&S*<
26 |Y.?_lC
6!bsM"F
\w8\1~#
yf,z$CR
65.9 %z$#6?OK^
2fS:-
8N
: rVnc =k
6S{l'!s'
0.025 4 |vC~HJpuv'
moE2G?R
jb)ZLA;L_c
p]"4#q\(
D/' dTrR
t`QENXA}
D&zle~" J
Z6m)tZVM
WEpoBP
CL
I}Q2Vu<
c`Wa^(
eQ}4;^;M-
h7@6T+#WoT
100~<200 (iGTACoF
*|l/6!WM
~;] d"'
aN=B]{!
10 3N:D6w-R
RGX=)
&-=5Xc+Z
M@ZI\
134 b u"!jHPB
TOAAQ
;S*}WqP,
VD\=`r)nT
0.021 0 rXU\
!Rt
>xD
<"|,"hA
K96<M);:g
xZv#Es%#
W#sU`T
_f:W?$\ho
:Zz
'1C
iW /}#
H
DFOA
qeZ? 7#Gf
"!%l/_p?
OH(waKq2I
>20 K&K